
项目二：URDF 移动机器人及 MoveIt!机械臂控制

第一部分： 建立移动机器人

1. Introduction to the Project

By doing this project, you will get to know how to use URDF (Universal Robot Description

Format) to create a 5 degree-of freedom (DOF) robot arm mounted on a robot chasis，

how to use XACRO (Extensible Markup Language Macros) to modularize the design of

reusable robot components, how to describe the physical characteristics of a robot such

as its colors, inertia and frictions, how to spawn a robot into a Gazebo world, and how

to use Gazebo ROS plugins to simulate a robot in the Gazebo world, e.g., moving a

robot in the Gazebo world w.r.t. its motion in ROS RViz.

Meanwhile, we will learn the useful motion control tool, namely MoveIt!, which aims to

implement the inverse kinematics of a robot arm.

You will gain the following knowledge if you successfully complete this project.

(1) Understand the difference between URDF, XACRO and SDF (simulation description

format).

(2) Be able to use URDF to build a simple robot, with the capability of spawning the

robot into a tailor designed Gazebo world.

(3) Be able to control the robot motion in Gazebo using Gazebo ROS plugins, and

control the motion of a robot arm using MoveIt!.

2. Software Setup

To achieve ROS integration with Gazebo, we need certain dependencies that would

establish a connection between both and convert the ROS messages into

Gazebounderstandable information. We also need a framework that implements real-

time-like robot controllers that help the robot move kinematically. The former

constitutes the gazebo_ros_pkgs package, which is a bunch of ROS wrappers written to

help Gazebo understand the ROS messages and services, and while latter constitutes the

ros_control and ros_controllers packages, which provide robot joint and actuator space

conversions and ready-made controllers that control position, velocity, or effort (force).

You can install them through these commands:

$ sudo apt-get install ros-melodic-ros-control

$ sudo apt-get install ros-melodic-ros-controllers

$ sudo apt-get install ros-melodic-gazebo-ros-control

We will be using the hardware_interface::RobotHW class from ros_control as it already

has defined abstraction layers and joint_trajectory_controller and diff_drive_controller

from ros_controllers for our robot arm and mobile base, respectively.

3. Build the Robot Base

Let's begin by modeling our robot base. ROS understands a robot in terms of URDF.

URDF is a list of XML tags that contains all of the necessary information of the robot.

Once the URDF for the robot base is created, we shall bring in the necessary connectors

and wrappers around the code so that we can interact and communicate with a

standalone physics simulator such as Gazebo. Let's see how the robot base is built step

by step.

3.1 Robot Base Prerequisites

To build a robot base, we need the following:

⚫ A good solid chassis with a good set of wheels with friction properties

⚫ Powerful drives that can help carry the required payload

⚫ Drive controls

In case you plan to build a real robot base, there are additional considerations you might

need to look into, for instance, power management systems—to run the robot efficiently

for as long as you wish—the necessary electrical and embedded characteristics, and

mechanical power transmission systems. What can help you get there is building a robot

in ROS. Why, exactly? You would be able to emulate (actually, simulate, but if you tweak

some parameters and apply real-time constraints, you could definitely emulate) a real

working robot, as in the following examples:

⚫ Your chassis and wheels would be defined with physical properties in URDF.

⚫ Your drives could be defined using Gazebo-ros plugins.

⚫ Your drive controls could be defined using ros-controllers.

Hence, to build a custom robot, let's consider the specifications.

3.2 Robot Base Specifications

Let's consider the following specifications for our robot base:

⚫ Size: Somewhere within 600 x 450 x 200 (L x B x H, all in mm)

⚫ Type: Four-wheel differential drive robot

⚫ Speed: Up to 1 m/s

⚫ Payload: 50 kg (excluding the robot arm)

3.3 Software Parameters

Now that we have the robot specifications, let's learn about the ROS-related information

we need to know of while building a robot base. Let's consider the mobile robot base as

a black box: if you give it specific velocity, the robot base should move and, in turn, give

the position it has moved to. In ROS terms, the mobile robot takes in information

through a topic called /cmd_vel (command velocity) and gives out /odom (odometery).

A simple representation is shown as follows:

 Figure 1: The mobile robot base as a blackbox

3.4 ROS Message Format

/cmd-vel is of the geometry_msgs/Twist message format. The message structure can be

found at http://docs.ros.org/melodic/api/geometry_msgs/html/msg/Twist.html. /odom

is of the nav_msgs/Odometry message format. The message structure can be found at

http://docs.ros.org/melodic/api/nav_msgs/html/msg/Odometry.html. Not all the fields

are necessary in the case of our robot base since our robot is a 2 degrees of freedom

robot.

3.5 ROS Controllers

We would define the robot base's differential kinematics model using the

diff_drive_controller plugin. This plugin defines the robot kinematics equations. It helps

our robot to move in space. More information about this controller is available at the

http://wiki.ros.org/diff_drive_controller website.

3.6 Modelling the Robot Base

Now that we have all the necessary information about the robot, let's get straight into

modeling the robot. The robot model we are going to build is as follows:

http://docs.ros.org/melodic/api/geometry_msgs/html/msg/Twist.html
http://docs.ros.org/melodic/api/nav_msgs/html/msg/Odometry.html
http://wiki.ros.org/diff_drive_controller

 Figure 2: Mobile robot model

There is something you need to know before you come out with thoughts about

modeling robots using URDF. You could make use of the geometric tags that define

standard shapes such as cylinder, sphere, and boxes, but you cannot model complicated

geometries or style them. These can be done using third-party software, for example,

sophisticated Computer Aided Design (CAD) software such as Creo or Solidworks or

using open source modelers such as Blender, FreeCAD, or Meshlab. Once they are

modeled, they're are imported as meshes. The models in this book are modeled by such

open source modelers and imported into URDFs as meshes. Also, writing a lot of XML

tags sometimes becomes cumbersome and we might get lost while building intricate

robots. Hence, we shall make use of macros in URDF called xacro

(http://wiki.ros.org/xacro), which will help to reduce our lines of code for simplification

and to avoid the repetition of tags.
Our robot base model will need the following tags:

⚫ <xacro>: To help define macros for reuse

⚫ <links>: To contain the geometric representations of the robot and visual

information

⚫ <inertial>: To contain the mass and moment of inertia of the links

⚫ <joints>: To contain connections between the links with constraint definitions

⚫ <gazebo>: To contain plugins to establish a connection between Gazebo and ROS,

along with simulation properties

For our robot base, there is a chassis and four wheels that are modeled. Have a look at

the following diagram for representation information of the links:

http://wiki.ros.org/xacro

 figure 3: The robot base sketch

The chassis is named base_link and you can see the coordinate system in its center.

Wheels (or wheel_frames) are placed with respect to the base_link frame. You can see

that, as per our representation, the model follows the right-hand rule in the coordinate

system. You can now make out that the forward direction of the robot will always be

toward the x axis and that the rotation of the robot is around the z axis. Also, note that

the wheels rotate around the y axis with respect to its frame of reference (you shall see

this reference in the code in the next section).

4. The URDF Modelling Work

Create your new package called my_robot, and compile it even if it is now empty:

$ mkdir -p ~/project2_ws/src

$ cd ~/project2_ws/src

$ catkin_init_worksapce

$ catkin_create_pkg my_robot catkin

$ cd my_robot

$ mkdir config launch meshes urdf

$ cd ../..

$ catkin_make

$ source devel/setup.bash

$ echo "source ~/project2_ws/devel/setup.bash" >> ~/.bashrc

Download the reference package in this new workspace:

$ cd ~/project2_ws/src

$ git clone https://github.com/Zhijun2/robot_description.git

Then, copy all the files inside the sub-directory called meshes in the reference package

called robot_description to the corresponding meshes subdir of your new package.

These files were exported from the CAD software for easily implementing the chasis and

arm components.

Enter the urdf subdir of your new project，create a new file called robot_base.urdf.xacro

for your chasis.

$ cd ~/project2_ws/src/my_robot/urdf

$ gedit robot_base.urdf.xacro

Following the steps below.

(1) First of all, copy the following content which contains the XML and robot tag in your

opened file.

<?xml version=”1.0”?>

<robot xmlns:xacro=http://ros.org/wiki/xacro name=”robot_base”>

</robot>

(2) Define the links. Since you're defining the robot model by parts, copy the following

code into the space in step (1) content (that is, the space between the tags). The

chassis link is as follows:

<link name="base_link">

 <visual>

 <origin xyz="0 0 0" rpy="1.5707963267949 0 3.14" />

 <geometry>

<mesh filename="package://my_robot/meshes/robot_base.stl"/>

 </geometry>

 <material name="">

 <color rgba="0.79216 0.81961 0.93333 1" />

 </material>

 </visual>

</link>

The link defines the robot geometrically and helps in visualization. The preceding is the

robot chassis, which we will call base_link. The tags are pretty straightforward. If you

http://ros.org/wiki/xacro

wish to learn about them, have a look at http://wiki.ros.org/urdf/XML/link.

(3) Define the wheels. Four wheels need to connect to base_link. We could reuse the

same model with different names and necessary coordinate information with the

help of xacro. So, let's create another file called robot_essentials.xacro and define

standard macros so that we can reuse them:

<?xml version="1.0"?>

<robot xmlns:xacro="http://ros.org/wiki/xacro" name="robot_essentials" >

<xacro:macro name="robot_wheel" params="prefix">

<link name="${prefix}_wheel">

<visual>

<origin xyz="0 0 0" rpy="1.5707963267949 0 0" />

<geometry>

<mesh filename="package://my_robot/meshes/wheel.stl" />

</geometry>

<material name="">

<color rgba="0.79216 0.81961 0.93333 1" />

</material>

</visual>

</link>

</xacro:macro>

</robot>

We have created a common macro for a wheel in this file. So, all you need to do now is

call this macro in your actual robot file, robot_base.urdf.xacro, as shown here:

<xacro:robot_wheel prefix="front_left"/>

<xacro:robot_wheel prefix="front_right"/>

<xacro:robot_wheel prefix="rear_left"/>

<xacro:robot_wheel prefix="rear_right"/>

That's it. Can you see how quickly you have converted that many lines of code (for a link)

into just one line of code for each link? If you wish to find out more about xacros, have

a look at http://wiki.ros.org/xacro. Now, let's learn how to define joints.

(4) Define the joints. The wheels are connected to base_link and they rotate around their

y axis on their own frame of reference. Due to this, we can make use of continuous

joint types. Since they're the same for all wheels, let's define them as xacro in the

robot_essentials.xacro file:

<xacro:macro name="wheel_joint" params="prefix origin">

 <joint name="${prefix}_wheel_joint" type="continuous">

 <axis xyz="0 1 0"/>

 <parent link ="base_link"/>

http://wiki.ros.org/urdf/XML/link
http://wiki.ros.org/xacro

 <child link ="${prefix}_wheel"/>

 <origin rpy ="0 0 0" xyz= "${origin}"/>

 </joint>

</xacro:macro>

As you can see, only the origin and the name need to change in the preceding block of

code. Hence, in our robot_base.urdf.xacro file, we'll define the wheel joints as follows:

<xacro:wheel_joint prefix="front_left" origin="0.220 0.250 0"/>

<xacro:wheel_joint prefix="front_right" origin="0.220 -0.250 0"/>

<xacro:wheel_joint prefix="rear_left" origin="-0.220 0.250 0"/>

Now that you have everything in your file, let's visualize this in rviz and see whether it

matches our representation. You can do that by using the following commands in a new

terminal:

$ cd ~/project2_ws

$ source devel/setup.bash

$ cd ./src/my_robot/urdf

$ roslaunch urdf_tutorial display.launch model:=robot_base.urdf.xacro

Now, you should see our robot model if everything was successful.

5. Building the Robot Base for Simulation

The above steps were used to define the robot URDF model so that it could be

understood by ROS. Now that we have a proper robot model that is understood by ROS,

we need to add a few more tags to view the model in Gazebo.

(1) Define Collisions. To visualize the robot in Gazebo, we need to add the <collision>

tags, along with the <visual> tags defined in the <link> tag, as follows:

<collision>

<origin

xyz="0 0 0"

rpy="1.5707963267949 0 3.14" />

<geometry>

<mesh filename="package://my_robot/meshes/robot_base.stl" />

</geometry>

</collision>

For the base, add them to the robot_base.urdf.xacro file since we defined base_link there.

For all the wheel links, add them to the robot_essentials.xacro file since we defined the

wheel link there:

<collision>

 <origin

 xyz="0 0 0"

 rpy="1.5707963267949 0 0" />

 <geometry>

 <mesh filename="package://my_robot/meshes/wheel.stl" />

 </geometry>

</collision>

Since Gazebo is a physics simulator, we define the physical properties using the tags.

We can acquire the mass and inertial properties from this third-party software. The

inertial properties that are acquired from this software are added inside the tag, along

with suitable tags, as indicated here:

⚫ For the base, the following is added to robot_base.urdf.xacro:

<inertial>

 <origin xyz="0.0030946 4.78250032638821E-11 0.053305" rpy="0 0 0" />

 <mass value="47.873" />

 <inertia

 ixx="0.774276574699151"

 ixy="-1.03781944357671E-10"

 ixz="0.00763014265820928"

 iyy="1.64933255189991"

 iyz="1.09578155845563E-12"

 izz="2.1239326987473" />

</inertial>

⚫ For all the wheels, the following is added to robot_essentials.xacro, for later reuse:

<inertial>

 <origin

 xyz="-4.1867E-18 0.0068085 -1.65658661799998E-18"

 rpy="0 0 0" />

 <mass value="2.6578" />

 <inertial>

 ixx="0.00856502765719703"

 ixy="1.5074118157338E-19"

 ixz="-4.78150098725052E-19"

 iyy="0.013670640432096"

 iyz="-2.68136447099727E-19"

 izz="0.00856502765719703" />

</inertial>

Now that the Gazebo properties have been created, let's create the mechanisms.

(2) Define actuators. Now, we need to define the actuator information for our robot

wheels in the robot_base_essentials.xacro file:

<xacro:macro name="base_transmission" params="prefix ">

 <transmission name="${prefix}_wheel_trans" type="SimpleTransmission">

 <type>transmission_interface/SimpleTransmission</type>

 <actuator name="${prefix}_wheel_motor">

<hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>

 <mechanicalReduction>1</mechanicalReduction>

 </actuator>

 <joint name="${prefix}_wheel_joint">

<hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>

 </joint>

</transmission>

</xacro:macro>

Let's call them in our robot file robot_base.urdf.xacro as macros:

<xacro:base_transmission prefix="front_left"/>

<xacro:base_transmission prefix="front_right"/>

<xacro:base_transmission prefix="rear_left"/>

<xacro:base_transmission prefix="rear_right"/>

Now that the mechanisms have been called, let's call the controllers that use them and

make our robot dynamic.

(3) Define ros_controllers. Finally, we need to port the plugins that are needed to

establish communication between Gazebo and ROS. For these, we need to create

another file called gazebo_essentials_base.xacro that will contain the tags. In the

created file, add the following gazebo_ros_control plugin:

<gazebo>

 <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">

 <robotNamespace>/</robotNamespace>

 <controlPeriod>0.001</controlPeriod>

 <legacyModeNS>false</legacyModeNS>

 </plugin>

</gazebo>

The robot's differential drive plugin is as follows:

<gazebo>

 <plugin name="diff_drive_controller" filename="libgazebo_ros_diff_drive.so">

 <legacyMode>false</legacyMode>

 <alwaysOn>true</alwaysOn>

 <updateRate>1000.0</updateRate>

 <leftJoint>front_left_wheel_joint, rear_left_wheel_joint</leftJoint>

 <rightJoint>front_right_wheel_joint, rear_right_wheel_joint</rightJoint>

 <wheelSeparation>0.5</wheelSeparation>

 <wheelDiameter>0.2</wheelDiameter>

 <wheelTorque>10</wheelTorque>

 <publishTf>1</publishTf>

 <odometryFrame>map</odometryFrame>

 <commandTopic>cmd_vel</commandTopic>

 <odometryTopic>odom</odometryTopic>

 <robotBaseFrame>base_link</robotBaseFrame>

 <wheelAcceleration>2.8</wheelAcceleration>

 <publishWheelJointState>true</publishWheelJointState>

 <publishWheelTF>false</publishWheelTF>

 <odometrySource>world</odometrySource>

 <rosDebugLevel>Debug</rosDebugLevel>

 </plugin>

</gazebo>

The friction property for the wheels as macros is as follows:

<xacro:macro name="wheel_friction" params="prefix ">

<gazebo reference="${prefix}_wheel">

 <mu1 value="1.0"/>

 <mu2 value="1.0"/>

 <kp value="10000000.0" />

 <kd value="1.0" />

 <fdir1 value="1 0 0"/>

</gazebo>

</xacro:macro>

The call macro in the robot file robot_base.urdf.xacro is as follows:

<xacro:wheel_friction prefix="front_left"/>

<xacro:wheel_friction prefix="front_right"/>

<xacro:wheel_friction prefix="rear_left"/>

<xacro:wheel_friction prefix="rear_right"/>

Now that we have defined the macros for our robot, along with the Gazebo plugins, let's

add them to our robot file robot_base.urdf.xacro. This can be easily done by just adding

the following two lines in the robot file inside the <robot> macro tag:

<xacro:include filename="$(find my_robot)/urdf/robot_base_essentials.xacro" />

<xacro:include filename="$(find my_robot)/urdf/gazebo_essentials_base.xacro" />

Now that the URDFs are complete, let's configure the controllers. Let's create the

following config file to define the controllers we are using. For this, let's go to our

workspace, go inside the config folder we created, and create a controller config file, as

shown here:

$ cd ~/project2_ws/src/my_robot/config

$ gedit control.yaml

Copy the following code into the file:

robot_base_joint_publisher:

 type: "joint_state_controller/JointStateController"

 publish_rate: 50

robot_base_velocity_controller:

 type: "diff_drive_controller/DiffDriveController"

 left_wheel: ['front_left_wheel_joint', 'rear_left_wheel_joint']

 right_wheel: ['front_right_wheel_joint', 'rear_right_wheel_joint']

 publish_rate: 50

 pose_covariance_diagonal: [0.001, 0.001, 0.001, 0.001, 0.001, 0.03]

 twist_covariance_diagonal: [0.001, 0.001, 0.001, 0.001, 0.001, 0.03]

 cmd_vel_timeout: 0.5

 wheel_separation : 0.445208

 wheel_radius : 0.0625

 base_frame_id: base_link

 odom_frame_id: odom

 enable_odom_tf: true

 estimate_velocity_from_position: false

 wheel_separation_multiplier: 1.0

 wheel_radius_multiplier : 1.0

 linear:

 x:

 has_velocity_limits : true

 max_velocity : 2.0

 has_acceleration_limits: true

 max_acceleration : 3.0

 angular:

 z:

 has_velocity_limits : true

 max_velocity : 3.0

 has_acceleration_limits: true

 max_acceleration : 6.0

/gazebo_ros_control:

 pid_gains:

 front_left_wheel_joint: {p: 20.0, i: 0.01, d: 0.0, i_clamp: 0.0}

 front_right_wheel_joint: {p: 20.0, i: 0.01, d: 0.0, i_clamp: 0.0}

 rear_left_wheel_joint: {p: 20.0, i: 0.01, d: 0.0, i_clamp: 0.0}

 rear_right_wheel_joint: {p: 20.0, i: 0.01, d: 0.0, i_clamp: 0.0}

Congratulations! You’ve completed the robot base model. It is now the time to simulate

it in Gazebo.

6. Testing the Robot Base

Now that we have the complete model for our robot base, let's put it into action and

see how our base moves. Follow these steps:

(1). Let's create a launch file that will spawn the robot and its controllers. Now, go into

the launch folder of our my_robot package and create the following launch file:

$ cd ~/project2_ws/src/my_robot/launch

$ gedit base_gazebo_control_xacro.launch

(2). Now, copy the following code into it and save the file:

<?xml version="1.0"?>

<launch>

 <param name="my_robot" command="$(find xacro)/xacro --inorder $(find

my_robot)/urdf/robot_base.urdf.xacro" />

 <include file="$(find gazebo_ros)/launch/empty_world.launch"/>

 <node name="spawn_urdf" pkg="gazebo_ros" type="spawn_model" args="-param

my_robot -urdf -model robot_base" />

 <rosparam command="load" file="$(find my_robot)/config/control.yaml" />

 <node name="base_controller_spawner" pkg="controller_manager" type="spawner"

args="robot_base_joint_publisher robot_base_velocity_controller"/>

</launch>

(3). Now, you can visualize your robot by running the following command:

$ source ~/project2_ws/devel/setup.bash

$ roslaunch my_robot base_gazebo_control_xacro.launch

Once launched, you should see something like below, without errors.

Figure 4: Launch outcomes

(4). You can view the necessary ROS topics by opening another Terminal and running

rostopic list:

 Figure 5: rostopic list outcomes

The Gazebo view of robot should be as follows.

 Figure 6: The Gazebo simulation

(5). Try using the rqt_robot_steering node and move the robot, as follows:

$ rosrun rqt_robot_steering rqt_robot_steering

In the window, mention our topic, /robot_base_controller/cmd_vel. Now, move the

sliders slowly and see how the robot base moves around. The robot base is all DONE!

7. Building the Robot Arm

Now that we built a robot base in URDF and visualized it in Gazebo, let's get to building

the robot arm. The robot arm will be built in a similar way to using URDF and there are

no differences in terms of its approach. There may be only a few changes that need to

be made to the robot base URDF. We will not describe this in detail, and simply show

the file names and commands for the simulation. If you are suggested to review the

code after the session if you are interested.

(1). Robot Arm Specification

⚫ Type: 5 DOF (short for degrees of freedom) robot arm

⚫ Payload: Within 3-5 kgs

(2). Software Parameters

If we consider the arm a black box, the arm gives out a pose based on the commands

each actuator receives. The commands may be in the form of position, force/effort, or

velocity commands. A simple representation is shown here:

 Figure 7: The robot arm as a black box

ROS message: The /arm_controller/command topic, which is used to command or

control the robot arm, is of the trajectory_msgs/JointTrajectory message format.

ROS controllers: joint_trajectory_controller is used for executing joint space trajectories

on a list of given joints. The trajectories to the controller are sent using the action

interface, control_msgs/FollowJointTrajectoryAction, in the follow_joint_trajectory

namespace of the controller.

 Figure 8: Representing the arm in 3D with links

(3). Copy robot_arm.urdf.xacro from the reference package you’ve downloaded, to the

same urdf directory of your package my_robot. You can analyse the file by yourself.

$ roscd my_robot

$ cp ../robot_description/urdf/robot_arm.urdf.xacro ./urdf

$ cp ../robot_description/urdf/robot_essentials.xacro ./urdf

You can analyse the file, focusing on the components of

Links: robot_arm.urdf.xacro

Joints: robot_essentials.xacro, robot_arm.urdf.xacro

Collision: robot_arm.urdf.xacro

Actuators: robot_arm_essentials.xacro, robot_arm.urdf.xacro

Controllers: gazebo_essentials_arm.xacro, arm_control.yaml, robot_arm.urdf.xacro

Now you can visualize your arm in rviz:

$ roscd my_robot/urdf

$ roslaunch urdf_tutorial display.launch model:=robot_arm.urdf.xacro

Add the robot model and, in Global options, set Fixed Frame to arm_base. Now, you

should see our robot model if everything was successful.

(4). Test the Robot Arm

$ roscd my_robot

$ cp ../robot_description/urdf/robot_arm_essentials.xacro ./urdf

$ cp ../robot_description/urdf/gazebo_essentials_arm.xacro ./urdf

$ cp ../robot_description/config/arm_control.yaml ./config

$ cp ../robot_description/launch/arm_gazebo_control_xacro.launch ./launch

Now, you could visualize your robot by running the following command:

$ roslaunch my_robot arm_gazebo_control_xacro.launch

You can evaluate the project by using, e.g. rostopic list, etc.

You can also publish in command line a command to control the arm.

$ rostopic pub /arm_controller/command trajectory_msgs/JointTrajectory

'{joint_names: ["arm_base_joint", "shoulder_joint", "bottom_wrist_joint", "elbow_joint",

"top_wrist_joint"], points: [{positions: [-0.1, 0.210116830848170721,

0.022747275919015486, 0.0024182584123728645, 0.00012406874824844039],

time_from_start: [1.0,0.0]}]}'

It seems a bit complex. Do not worry, we will learn how to move the arm in a more

convenient way.

8. Putting Things Together

We now combine arm and base together to form a mobile manipulator. We still copy

files from our sources, while we need to analyse them.

$ roscd my_robot

$ cp ../robot_description/urdf/mobile_manipulator.urdf.xacro ./urdf

$ roslaunch urdf_tutorial display.launch model:=./urdf/mobile_manipulator.urdf.xacro

 Figure 9: The rviz model view of the mobile manipulator

Copy the launch file to simulate the robot in Gazebo:

$ cp ../robot_description/launch/mobile_manipulator_gazebo_control_xacro.launch ./launch

Now you can visualize your robot by running the following command：

$ roslaunch my_robot mobile_manipulator_gazebo_xacro.launch

You can now try to move the base and arm, as shown in their respective sections. We

will learn how to control the manipulator using MoveIt! package in the next half.

