1 H —: URDF #zh#138 A & Movelt! 411 B H
FE 49 EFH Movelt!lIRFIH A

1. Introduction to Movelt!

Moveit is a sophisticated piece of software written on top of ROS for achieving inverse
kinematics, motion or path planning, 3D perception of the environment, collision
checking, and so on. It is the primary source of functionality for manipulation in ROS.
Moveit understands a robot arm configuration (geometry and link information)
through urdf and ROS message definitions and utilizes the ROS visualizing (RViz) tool
to perform manipulation.

Moveit is used in more than 100 robot arms and you can find more information about
those robots here: https://moveit.ros.org/robots/. Moveit has lots of advanced features
and is used by many industrial robots as well. Covering all the Moveit! concepts is out
of the scope of this course, we shall only look at it from the engineering and application
point of view, and what we need to move and control our robot arm. The following is

the architecture of Moveit!.

ROS Param Server
::1 i &

JUserInterface . I B )
i | move group interface L MoveGroupAction o '
| + . - O
j C++) » PickAction N | JointTrajectoryAction § 3
[ PlaceAction 0 e &
| » @ §
' Get Cart Path S o |
' | moveit_ commander | ., S “artesian rath Semice | = —
¢ (Python) b Get IK Service ) =
: H Get FK Service 3 w2
: . Get Plan Validity Service VO |, Point Cloud Topic § S
e . | x ¥
i Ruviz P Plan Path Service Q o
I 80 (i Fren .. FExecute PathService | O £
' .. Get Planning Scene Service (=) e
| [
T rS WS T ek E 2
| Joint States Topic \ S
: Other Interfaces AttachedObject . P . A
| PR AR A ) CollisionObject g Robot ] 3
: PlanningSceneDiff A e State | §
1 Publisher

Figure 1. Movelt Architecture

Here, we have the most important component, that is, the move_group node, which is
responsible for putting all other components together to provide the user with


https://moveit.ros.org/robots/

necessary actions and service calls to use. The user could interface by using a simple
scripting interface (for beginners) called the moveit_ commander interface, a C++
wrapper called move_group_interface, a Python interface written on top of
move_it_commander, or the GUI interface using an RViz plugin. The move_group node
would need the robot information that is defined through URDF, as well as configuration
files. Moveit understands the robot in a format called SRDF (semantic robot description
format) that Moveit converts into URDF while setting up the robot arm. Also, the
move_group node understands the robot arm's joint states and talks back via the
FollowJointTrajectoryAction client interface. For more information about Movelt! please
see: https://moveit.ros.org/documentation/concepts/.

2. Install and configure Movelt for our mobile robot

Installing and configuring Moveit is a multistep process. Let's begin by learning how to
install it.

2.1 Installing Moveit

$ sudo apt install ros—melodic—moveit
$ sudo apt—get install ros—melodic-moveit-setup—assistant
$ sudo apt—get install ros—melodic-moveit-simple—controller-manager

$ sudo apt—get install ros—melodic-moveit-fake—controller—-manager

Once they're all installed, we can begin configuring our robot using a Moveit setup
assistant wizard.

2.2 Configuring the Movelt setup assistant wizard

This wizard is very useful, particularly because it helps us save time. Some of the things
that we can do with this wizard are as follows:

Define collision zones for our robot arm
Set custom poses

Choose the necessary kinematics library
Define ROS controllers

Create the necessary simulation files

We can invoke the setup assistant using the following command:

$ roslaunch moveit setup assistant setup assistant. launch



https://moveit.ros.org/documentation/concepts/

You should see the window shown here:

Maveit! Setup Assistant

_ Movelt! Setup Assistant

These tools will assist you in creating a Semantic Robot Description Format (SRDF) file, various yami configuration
and many roslaunch files for utilizing all aspects of Moveit! functionality

Create new or edit existing?

All settings for Movelt! are stoced In the Moveit!
configuration package. Here you have the option to create
a new configuration package or load an existing one. Note:
changes to a Moveit! configuration package outside this
Setup Assistant are likely to be overwritten by this tool.

Create New Movelt Edit Existing Movest
Canfiguration Package Conlfiguration Package

> Movelt!

Setup Assistant 2.0

Figure 2: Movelt setup assistant wizard

Now, let's look into the configuration steps, one by one.

2.2.1 Loading the robot model

Let's configure our robot in Moveit by selecting the respective robot URDF. We do that
by clicking Create New Moveit Configuration Package, loading our robot URDF,
mobile_manipulator.urdf, and selecting Load Files. You should see a success message,

along with our robot in the right-hand pane:

Moveit! Sstup Assistant

_' Movelt! Setup Assistant

These tools will assist you In creating a Semantic Robot Description Format
SelfCollisions (SRDF) file, various yaml configuration and many roslaunch files for utilizing all
aspects of Moveit! functionality.

Virtual Joints
Planning Groups
RobLOL Poses
£nd Effectors
Passive Joints
ROS Control
Simutation

3D Perception

Success! Use the left navigation pane to continue.

Figure 3: Movelt loading success

Author information

Configuration Files «




Now, let's set up the components on the left-hand pane.

2.2.2 Setting up self-collisions

Click on Self-Collisions on the left pane and select Generate Collision Matrix. Here, you
can set the sampling density high if you wish to move the robot arm in a more confined
space. This may increase the planning time for the robot to execute a trajectory and may
sometimes fail execution due to a collision assumption.

2.2.3 Setting up planning groups

Let's set up planning groups by following these steps:

1. In Planning Groups, add our robot arm group by selecting Add Group.

2. Name our group arm.

3. Select Kinematic Solver as kdl_kinematics_plugin/KDLKinematicsPlugin. Set the
resolution and timeout as the default values.

4. Select RRTStar as our Planner.

5. Now, add our robot arm joints and click Save.

Your final window should look as follows:

Movelt! Setup Assistant

Start Define Planning Groups
Create and edit 'joint model’ groups for your robot based on joint collections,
Seif-Collisions link collections, kinematic chains or subgroups, A planning group defines the set

of (joint, link) pairs considered for planning and colliston checking. Define
individual groups for each subset of the robot you want to plan for,Note: when
adding a link to the group, its parent joint is added too and vice versa.

S
~ arm

« Joints
arm_base_joint - Revolute
bottom_wrist_joint - Revolute
End Effectors elbow_joint - Revolute
shoulder_joint - Revolute
top_wrist_joint - Revolute

Virtual Josnts

Robot Poses

Passive Joints Unks
Chain

ROS Control Subgroups

Simutation

30 Perception

Author Information
Expand AN Collapse All Pelete Selected  Edit Selected  Add Group

Configuration Files «

Figure 4: Movelt planning groups

Once the arm group has been set, we can set the poses for the arm.

2.2.4 Setting up arm poses

Now, let's define the robot poses. Click Add Pose and add the following poses in the
following format (Posename : arm_base_joint, shoulder_joint, bottom_wrist_joint,



elbow_joint, top_wrist_joint):
® Straight: 0.0, 0.0, 0.0, 0.0, 0.0
® Home: 15708, 0.7116, 1.9960, 0.0, 1.9660

Figure 5: Robot arm pose

We don't have an end effector, so we can skip this step

2.2.5 Setting up passive joints

Now, let's define the Passive Joints—those whose joint states are not expected to be
published:

Movelt! Setup Assistant

start Define Passive Joints
Specify the set of passive joints (not actuated). Joint state is not expected to be

Self-Collisions published for these joints
Virtual Joints

Active Joints Passive Jounts
Planning Groups Joint Names Joint Names

1 arm_base_joint 1 front_left_wheel joint
Robok Poses 2 shoulder_joint 2 front_right_wheel_joint

1 bottom_wrist_joint * % rear_left_wheel_joint

End Effectors
4 evibow_joint 4 rear_right_wheel_joint

- Ao o

6 front_left_wheel_jaint

ROS Control
7 front_right_wheel_joint

Simulation B rear_left_wheel_joint =
9 rear_right_wheel_joint

3D Perception = -

Author information

Configuration Files «

Figure 6: Movelt passive joints

Now, it's time to check the ROS controllers we set up with the robot URDF.

2.2.6 Setting up ROS controllers




Now, we need to connect our robot with Moveit for manipulation through the ROS
controllers we defined. Click ROS control, then click Auto Add FollowJointsTrajectory
Controllers For Each Planning Group. You should see the controller being automatically
ported in, as shown here:

Movelt! Setup Assistant O

Start Setup ROS Controllers
Configure Movelt! to work with ROS Control to control the robot’s physical
Seif-Collisions hardware
Auto Add frollruw)omlsrtmiectory
Victuat Jolnts Controtlers For Each Planning Group
Planning Groups Controller Cof’\lrnllﬂ Type
« arm_controller FollowjointTrajectory
* Joints

Robot Poses arm_base_joint

shoulder_jolnt

bottom_wrist_joint
End Effector >

- elbow_joint

top_wrist_joint
Passive Joints
Simulation
30 Perception
Author infarmation

Expand All Collapse All Add Controller

Configuration Files =

Figure 7: Movelt setup ROS controllers

The FollowJointTrajectory plugin we had called upon in our plugin is shown in the
preceding screenshot. Now, let's finalize the Moveitconfig package.

2.2.7 Finalizing the MoveitConfig package

The next step will autogenerate a URDF for simulation:

1. In case you made any changes, these changes will be highlighted in green. We can
skip this step as we didn't change anything.

2. We don't need to define a 3D sensor, so skip this step as well.

3. Add any appropriate information in the Author Information tab.

4. The final step is the Configuration Files, where you will see a list of files that have been
generated. The window is as follows:

wioses  Generate Configuration Files

DRen o0 mDAets S LS W R et age SewT (5 139 pear Sotet with
e Moe. (bbb Thes 1o Gt hore S Baway groes siod (s s00d & g
T e QLR Charge 83 Ve FRET 3 B1amge Neve Serr sonarat i ey
" L
Fary oo
Canfigurstion Pachage Save Par
el N e Ay P Gwened Srnihry Tai T Maw | G g s i hage b
Qeoevated Dvarwr g 42 SUVING ORVIGM 930N Darbage frestary &
e tfacor T )

e e I e e o B

WD b g ees e beet

Dt o 0
ey

e P lage

g Absida

Figure 8: Configuration files



5. Give a configuration name such as robot_description_moveit_config, click on Generate
Package, and exit the setup assistant.

Now, let's control the robot arm using Moveit.

3. Controlling robot arm using Movelt!

Once Moveit has been configured, we can test our robot arm manipulation using the
GUI interface (RViz plugin):

1. Launch the mobile manipulator in Gazebo:

$ source devel/setup. bash
$ roslaunch my robot mobile manipulator gazebo xacro. launch

2. In anew Terminal, open the move_group.launch file that was auto-generated by the
Moveit setup assistant wizard:

$ source devel/setup. bash
$ roslaunch robot description moveit config move group. launch

Your Terminal's output would be similar to what's shown in the following screenshot:

/home/robot fchapter_5_ws/src/robot_description_movelt_config/launch/move_group.launc

Edit View Search Termir Tabs Helg

Figure 9: move_group.launch

3. Now, let's open RViz to control the robot’'s motion:



$ source devel/setup. bash

$ roslaunch robot description moveit config movit rviz. launch config:

=True

You should see the following window.

) ptmas
2 onplays

AN

p e ——

Contest

Plannmg Litrary
OMP

T

Werehoute
How: 700

warkipacs
Center (2¥T)

e (xv2)

Ede Parwh e

Paove Cavery

+ © Gobal Optiors

Manwing

4 Swboct

Giobal Seatus Ok

Manipulation

Sceme Objects  SLoced Scenes

Plarver Paeameten

Port 33

2,00

- Boo

T 000
200 ~

200 « 200

Pevet Laft-Clok: Rotate Midle-Click: Muve X/Y Right-Clcks Move 7 SNFE More agthoes

Figure 10: rviz Movelt launch

Stored States ¥

11 ol

4. Go to the Planning tab, select home in Goal State, and click on Plan. You should see
a visual of the robot arm planning (moving) to the target position.

Congratulations! Now you know how to build a robot using URDF/XACRO, configure and
control it using Movelt! That’s a great achievement.




