
Turtlebot3 SLAM

1. Introduction to the Project

TurtleBot3 supports development environment that can be programmed and

developed with a virtual robot in the simulation. There are two development

environments to do this, one is using fake node and 3D visualization tool RViz and the

other is using the 3D robot simulator Gazebo.

The fake node method is suitable for testing with the robot model and movement, but

it cannot use sensors. If you need to test SLAM and Navigation, we recommend using

Gazebo, which can use sensors such as IMU, LDS, and camera in the simulation.

2. Software Installation

2.1 Install Dependent Packages

First of all you need to install the dependent packages using the following command.

sudo apt-get install ros-noetic-joy ros-noetic-teleop-twist-joy ros-

noetic-teleop-twist-keyboard ros-noetic-laser-proc ros-noetic-rgbd-

launch ros-noetic-depthimage-to-laserscan ros-noetic-rosserial-

arduino ros-noetic-rosserial-python ros-noetic-rosserial-server ros-

noetic-rosserial-client ros-noetic-rosserial-msgs ros-noetic-amcl

ros-noetic-map-server ros-noetic-move-base ros-noetic-urdf ros-

noetic-xacro ros-noetic-compressed-image-transport ros-noetic-rqt-

image-view ros-noetic-gmapping ros-noetic-navigation ros-noetic-

interactive-markers

2.2 Install Turtlebot3 Packages

Then, you can download the Turtlebot3 stack and packages using the following

commands, pls run the commands line by line in your Ubuntu shell.

mkdir -p ~/turtlebot_ws/src

cd ~/turtlebot_ws/src

catkin_init_workspace

git clone https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git

git clone https://github.com/ROBOTIS-GIT/turtlebot3.git

git clone https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git

cd ~/turtlebot_ws && catkin_make

echo "source ~/turtlebot_ws/devel/setup.bash" >> ~/.bashrc

In Ubuntu Linux, the hidden file in your home directory, .bashrc, is automatically run

everytime you open a new shell. It is very important in ROS that you need to include your

newly compiled packages in the environment variable ROS_PACKAGE_PATH so that ros

master can recognize and know where to find it. The way to do it is to source the setup

script file, like run the command source ~/turtlebot_ws/devel/setup.bash in

your shell. DO NOT FORGET IT! Otherwise you cannot run your ROS packages. A

convenient way is to put this command in the .bashrc so that it will be automatically

executed whenever you open a new shell.

3. Turtlebot3 Simulation

3.1 Turtlebot3 Simulation using Fake Node

https://youtu.be/iHXZSLBJHMg

https://www.youtube.com/watch?v=V8VJUkWWaO8

To launch the virtual robot, execute the turtlebot3_fake.launch file in

the turtlebot3_fake package as shown below. The turtlebot3_fake is a very simple

simulation node that can be run without having an actual robot. You can even control the

virtual TurtleBot3 in RViz with a teleoperation node.

Before executing this command, you have to specify the model name of TurtleBot3.

The ${TB3_MODEL} is the name of the model you are using

in burger , waffle , waffle_pi .

So everytime before you run a ROS node, you need to run export

TURTLEBOT3_MODEL=${TB3_MODEL}, where ${TB3_MODEL} is burger, waffle or

waffle_pi. To permanently set this environment variable, you can attach the following line

in your .bashrc hidden file.

export TURTLEBOT3_MODEL=burger

Let’s run the following commands to do the simulation. In a shell, run the following:

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_fake turtlebot3_fake.launch

Open a new shell, run the following to teleoperate the robot:

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

3.2 Turtlebot3 Simulation using Gazebo

https://youtu.be/iHXZSLBJHMg
https://www.youtube.com/watch?v=V8VJUkWWaO8

https://youtu.be/UzOoJ6a_mOg

There are two ways to simulate using Gazebo. The first method is to use with ROS

through turtlebot3_gazebo package and second method is to use only gazebo

and turtlebot3_gazebo_plugin plugin without using ROS. We will focus on the first way.

3.2.1 Simulation in Empty World

 The following command can be used to test the virtual TurtleBot3 on the empty world of

the gazebo default environment.

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_gazebo turtlebot3_empty_world.launch

3.2.2 Simulation in Turtlebot3 World

 TurtleBot3 world is a map consists of simple objects that makes up the shape of

TurtleBot3 symbol. TurtleBot3 world is mainly used for testing such as SLAM and

Navigation. Ctrl+Shift+Mouse can control the view of the scene.

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_gazebo turtlebot3_world.launch

https://youtu.be/UzOoJ6a_mOg

3.2.3 Simulation in Turtlebot3 House

 TurtleBot3 House is a map made with house drawings. It is suitable for testing related

to more complex task performance.

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_gazebo turtlebot3_house.launch

NOTE : If TurtleBot3 House is executed for the first time, downloading the map file takes a couple of

minutes or more depending on download speed. You need internet connection.

3.3 Drive Turtlebot3

3.3.1 Teleoperation on Gazebo

 In order to control a TurtleBot3 with a keyboard, please launch teleoperation feature

with below command in a new terminal window.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

3.3.2 Collision Avoidance

 In order to autonomously drive a TurtleBot3 around the TurtleBot3 world, open a new

terminal window and enter below command.

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_gazebo turtlebot3_world.launch

 Open a new terminal window and enter below command.

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_gazebo turtlebot3_simulation.launch

3.4 Execute rviz

RViz visualizes published topics while simulation is running. You can launch RViz in a

new terminal window by entering below command.

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch

3.5 Virtual SLAM with Turtlebot3

 For virtual SLAM in Gazebo, instead of running the actual robot, you can select the

various environments and robot models mentioned above, and the SLAM-related

commands will use the ROS packages used in the SLAM section.

3.5.1 Virtual SLAM Execution Procedure

The following commands are examples of using the TurtleBot3 Waffle Pi model and

the turtlebot3_world environment.

• Launch Gazebo

export TURTLEBOT3_MODEL=waffle_pi

roslaunch turtlebot3_gazebo turtlebot3_world.launch

• Launch SLAM

export TURTLEBOT3_MODEL=waffle_pi

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=gmapping

• Remotely Control TurtleBot3

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

• Save the Map

rosrun map_server map_saver -f ~/map

When you run the dependent packages and move the robot in virtual space and

create a map as shown above, you can create a map as shown in figure below.

https://emanual.robotis.com/docs/en/platform/turtlebot3/slam/#slam

3.6 Virtual Navigation with Turtlebot3

 For virtual Navigation in Gazebo, instead of running the actual robot, you can select the

various environments and robot models mentioned above, and the Navigation-related

commands will use the ROS packages used in the Navigation section.

3.6.1 Virtual Navigation Execution Procedure

Terminate all applications that were executed during the virtual SLAM practice and

execute related packages in the following instruction, the robot will appear on the

previously generated map. After setting the initial position of the robot on the map, set

the destination to run the navigation as shown in figure below. The initial position only

needs to be set once.

• Execute Gazebo

export TURTLEBOT3_MODEL=waffle_pi

roslaunch turtlebot3_gazebo turtlebot3_world.launch

• Execute Navigation

export TURTLEBOT3_MODEL=waffle_pi

roslaunch turtlebot3_navigation turtlebot3_navigation.launch map_file:=$HOME/map.yaml

https://emanual.robotis.com/docs/en/platform/turtlebot3/navigation/#navigation

3.7 Testing Virtual Turtlebot3 by Tuning Parameters

Navigation stack has many parameters to change performances for different robots.

You can get an information about it in ROS Wiki. This tuning guide give some tips for

you to configure important parameters. If you want to change performances depends on

your environments, these tips might be help you and save your time.

 3.7.1 inflation_radius

turtlebot3_navigation/param/costmap_common_param_$(model).yaml

This parameter makes inflation area from the obstacle. Path would be planned in

order that it doesn’t cross this area. It is safe that to set this to be bigger than robot

radius.

 3.7.2 cost_scaling_factor

 turtlebot3_navigation/param/costmap_common_param_$(model).yaml

http://wiki.ros.org/navigation

This factor is multiplied by cost value. Because it is a reciprocal proportion, this

parameter is increased, the cost is decreased. The best path is for the robot to pass

through a center of between obstacles. Set this factor to be smaller in order to far from

obstacles.

3.7.3 Other Parameters

max_vel_x

turtlebot3_navigation/param/dwa_local_planner_params_$(model).yaml

This factor is set the maximum value of translational velocity.

min_vel_x

turtlebot3_navigation/param/dwa_local_planner_params_$(model).yaml

This factor is set the minimum value of translational velocity. If set this negative, the

robot can move backwards.

max_trans_vel

turtlebot3_navigation/param/dwa_local_planner_params_$(model).yaml

Actual value of the maximum translational velocity. The robot can not be faster than

this.

min_trans_vel

turtlebot3_navigation/param/dwa_local_planner_params_$(model).yaml

Actual value of the minimum translational velocity. The robot can not be slower than

this.

max_rot_vel

turtlebot3_navigation/param/dwa_local_planner_params_$(model).yaml

Actual value of the maximum rotational velocity. The robot can not be faster than this.

min_rot_vel

turtlebot3_navigation/param/dwa_local_planner_params_$(model).yaml

Actual value of the minimum rotational velocity. The robot can not be slower than this.

acc_lim_x

turtlebot3_navigation/param/dwa_local_planner_params_$(model).yaml

Actual value of the translational acceleration limit.

acc_lim_theta

turtlebot3_navigation/param/dwa_local_planner_params_$(model).yaml

Actual value of the rotational acceleration limit.

xy_goal_tolerance

turtlebot3_navigation/param/dwa_local_planner_params_$(model).yaml

The x,y distance allowed when the robot reaches its goal pose.

yaw_goal_tolerance

turtlebot3_navigation/param/dwa_local_planner_params_$(model).yaml

The yaw angle allowed when the robot reaches its goal pose.

Exercise: Please change the inflation_radius to see the navigation effect.

4. Conclusion

SLAM and navigation are two important areas in intelligent robotics. ROS has realized

the SLAM algorithm, namely gmapping, and the navigation algorithm, namely acml. In

this project, we have done a range of exercises to study how to use the related ROS

packages to do SLAM and navigation for the Robotis Turtlebot3. It is expected that you

will be able to know the basic knowledge of the ROS SLAM and navigation applications

so that you will be able to do the similar exercises using other third party packages.

Reference:

1. 表允晳 赵汉哲 郑黎蝹 林泰勋， “ROS Robot Programming”， Robotis Co.Ltd.,

2017

2. https://emanual.robotis.com/docs/en/platform/turtlebot3

https://emanual.robotis.com/docs/en/platform/turtlebot3

